# Technical Information <br> Operating Instructions 

## PZF511

## Impressum

Meinberg Funkuhren GmbH \& Co. KG
Auf der Landwehr 22
D-31812 Bad Pyrmont
Phone: $\quad+49$ (0) $5281 / 9309-0$
Fax: $\quad+49(0) 5281 / 9309-30$

Internet: http://www.meinberg.de
Email: info@meinberg.de

April 26, 2006

## Table of contents

Impressum ..... 2
General information ..... 5
Features PZF511 ..... 6
Installation PZF511 ..... 7
Operating voltage ..... 7
Antenna ..... 7
Assembly of antenna ..... 7
Front panel ..... 8
Pilot lamps ..... 8
Display ..... 9
Control keys ..... 9
Menu items ..... 9
Menu TIME ..... 9
Menu DATE ..... 10
Menu DAY o.W ..... 10
Menu PZF STAT ..... 10
Menu FIELD ..... 11
Menu SETUP ..... 11
Menu DIST. o. T ..... 11
Menu SYNTH. ..... 12
Menu SYNTH M. ..... 12
Menu TIME REF ..... 13
Menu PAR.COMx ..... 13
Menu SER.MODE ..... 13
Menu IRIG ..... 14
Menu IRIG REF ..... 14
Menu OSZ.ADJ. ..... 15
Menu DAC CLR ..... 15
Menu SER. No. ..... 15
Asynchronous serial interfaces ..... 16
Pulse outputs ..... 16
Standard frequencies ..... 16
Frequency synthesizer ..... 17
Timecode ..... 17
Abstract ..... 17
Block Diagram Timecode ..... 18
IRIG Standard Format ..... 19
AFNOR Standard Format ..... 20
Assignment of CF Segment in IEEE1344 Code ..... 21
DC and AM Timecodes ..... 22
Sine Wave AM Output ..... 22
PWM DC Output ..... 22
DCF77 Emulation ..... 22
Realtime clock ..... 23
TIME_SYN output ..... 23
Firmware updates ..... 24
Replacing the lithium battery ..... 24
CE Label ..... 24
Technical specifications ..... 25
PZF511 with OCXO ..... 27
Format of the Meinberg Standard Time String ..... 29
Signal description PZF511 ..... 30
Rear Connector Pin assignment ..... 31
Menüstruktur PZF511 ..... 33

## General information

The German long wave transmitter DCF77 started continious operation in 1970. The introduction of time codes in 1973 build the basic for developing modern radio remote clocks.

The carrier frequency of 77.5 kHz is amplitude modulated with time marks each second. The BCD-coding of the time telegram is done by shifting the amplitude to $25 \%$ for a period of 0.1 s for a logical ' 0 ' and for 0.2 s for a logical ' 1 '. The receiver reconstructs the time frame by demodulating this DCF-signal. Because the AM-signal is normally superimposed by interfering signals, filtering of the received signal is required. The resulting bandwidth-limiting causes a skew of the demodulated time marks which is in the range of 10 ms . Variations of the trigger level of the demodulator make the accuracy of the time marks worse by additional $+/-3 \mathrm{~ms}$. Because this precision is not sufficient for lots of applications, the PTB (Physical and Technical Institute of Germany) began to spread time informations by using the correlation technique.

The DCF-transmitter is modulated with a pseudo-random phase noise in addition to the AM. The pseudo-random sequence (PZF) contains 512 bits which are transmitted by phase modulation between the AM-time marks. The bit sequence is build of the same number of logical '0' and logical '1' to get a symmetrical PZF to keep the average phase of the carrier constant. The length of one bit is 120 DCF-clocks, corresponding to $1,55 \mathrm{~ms}$. The carrier of 77.5 kHz is modulated with a phase deviation of $+/-10^{\circ}$ per bit. The bit sequence is transmitted each second, it starts 200 ms after the beginning of a AM second mark and ends shortly before the next one.

Compared to an AM DCF77-receiver, the input filter of a correlation receiver can be dimensioned wide-bandwidth. The incoming signal is correlated with a reconstructed receiver-PZF. This correlation analysis allows the generation of time marks which have a skew of only some microseconds. In addition, the interference immunity is increased by this method because interference signals are suppressed by averaging the incoming signal. By sending the original or the complemented bit sequence, the BCD-coded time information is transmitted.

The absolute accuracy of the generated time frame depends on the quality of the receiver and the distance to the transmitter, but also on the conditions of transmission. Therefore the absolute precision of the time frame is better in summer and at day than in winter and at night. The reason for this phenomenon is a difference in the portion of the sky wave which superimposes the ground wave. To check the accuracy of the time frame, the comparison of two systems with compensated propagation delay is meaningful.

## Features PZF511

The PZF511 is a high precision receive module for the DCF77-signal build in eurocard size ( $100 \mathrm{~mm} \times 160 \mathrm{~mm}$ ). The 61 mm wide front panel contains an eight digit alphanumeric display, three LEDs and two keys as control actuators.

The microcontroller of the system correlates its receiver-PZF with the incoming pseudorandom sequence and decodes the time information of the DCF-telegram simultaneously. The controller handles input and output functions of the PZF511 and synchronizes the internal realtime clock.

By evaluating the pseudorandom phase noise, the PZF511 is able to generate time frames with thousand times the accuracy of standard AM-time code receiver. The precise regulation of the main oscillator of the radio clock is possible therefore. So, the PZF511 can be used as a standard frequency generator besides the application as a time code receiver. Four fixed and one settable TTL-level standard frequencies are available at the rear VG-connector. The synthesizer frequency exists as an open drain output and a sinewave signal also.

As an addition to the previous PZF510 the PZF511 generates an IRIG timecode that is available at the rear VG-connector both as a modulated AM and as an unmodulated DCoutput.

Furthermore the PZF511 provides active-low as well as active-high TTL pulses per minute and per second. To distribute informations concerning date, time and status, three independant serial interfaces (RS232) are used which are configurable in a setup menu.

Like mentioned before, the PZF511 includes a battery-backed realtime clock which runs crystal-precise if the main power supply fails.

Important system parameters are stored in a battery-backed RAM or non-volatile (EEPROM) memory.

If an update of system software becomes necessary, the new firmware can be loaded via serial interface (COM0) without removing the PZF511 for inserting a new EPROM.

## Installation PZF511

To achieve the technical data given in chapter 'technical specifications', the following points must be observed.

## Operating voltage

The clock operates with a single +5 V supply. This voltage should be sourced by a linear regulated power supply. If a switched mode power supply is used, the GND access of the PZF511 should be grounded directly or via a capacitance of at least $0.1 \mu \mathrm{~F}$. This connection avoids the signal-to-noise ratio reducing influence of harmonics of the switched mode power supply.

## Antenna

The PZF511 operates with a ferrite antenna which is damped to match the bandwith needed for the correlation reception.

## Assembly of antenna

The antenna has to be mounted as exactly as possible. Turning it out of the main receive direction will result in less accurate time frames. The antenna must be placed in longitudinal direction to the DCF-transmitter (Frankfurt). The nearness to microcomputers should be avoided (PZF511 included) and the antenna should be installed with a minimum distance of 30 cm to all metal objects, if possible. A distance of several meters to TV- or computermonitors must be kept.

After switching the PZF511 to the menu 'FIELD', the adjustment of the antenna can be executed. The displayed value is proportional to the received field strength. The best method of mounting the antenna is to look for the minimum field strength and turn the antenna by $90^{\circ}$ to maximum then. A high field strength on its own is no guarantee for good conditions of receiption, because interfering signals within the bandwidth of the receiver also have an effect on the displayed value.

The maximum interference immunity can be found by looking at the autocorrelation coefficient (in percent) in the menu 'PZF-STAT'. The displayed value should be close to $100 \%$ for best receiption.

## Front panel



## Pilot lamps

The 'Feld'-LED is switched on if a DCF-signal with at least minimum field strength needed for the correlation receiption is detected at the input of the receiver.

The 'Syn.'-LED indicates that the autocorrelation coefficient decreases beyond a value that is needed and a correct receiption is not possible therefore. This happens if a strong interferer within the bandwidth of the receiver is present or the transmitter is switched of.

If the 'Freil.'-LED is on, it was not possible to synchronize the internal realtime clock to DCF-time. This condition occures for at most two minutes after switching on the PZF511, because two DCF-telegrams are checked for plausibility before the data is taken over. Short disturbance of receiption can cause this state too.

## Display

The eight digit alphanumeric display shows important information concerning status and time. The setting of system parameters is also done with the help of the display.

## Control keys

It is possible to change the displayed information (time, date or status information) by two keys. The 'Menu'-key selects one of several menus. After presing the 'Set'-button the belonging information appears on the display. Furthermore, the keys are used to set userspecific parameters in several submenus.

## Menu items

The type of DCF-clock and the software revision are displyed first after power-up. The following informations are readable before the PZF511 switches to time-display automatically:

$$
\mathrm{PEFPE} \text {. }
$$

REU:1. 91

The handling of any queries will be simplified if the software revision is given by the user. The following menus are available then:

## Menu TIME

In this menu the current time is displayed (this is the default after power up).

> TME:
$14: 3617$

## Menu DATE

After the Set button is pressed, the actual date appears on the display.

30.61 .66

## Menu DAY o.W.

The day of the week will be displayed in this menu.

MOMDHY

## Menu PZF STAT

Information on the decoding of the pseudo-random sequence is available in this menu.

$$
\mathrm{PRF} \text { STAT }
$$

The following texts may be displayed:


This message indicates that the system tries to achieve a coarse synchronisation. This procedure starts after power-up or worse receiption for more than ten seconds. If the coarse synchronisation was successfull, the receiver enters the state of fine-correlation. The system tries to lock the received PZF as exact as possible to generate a precise time frame. The display shows the correlation coefficient at the end of each second, which can be up to $100 \%$. A high value for the coefficient should be achieved by choosing a suitable position for the antenna.


The essential part of the tracking is completed five seconds after "FC: $\mathrm{xx} \%$ " appeared and the generation of pulses per minute and per second starts. Tracking steps of three microseconds are possible each second until the internal realtime clock is synchronized (two minutes max.). Afterwards, corrections of the time frame are executed per minute only. The direction of these steps is displayed by the characters ' $>$ ' or ' $<$ ' behind the digits of the correlation coefficient.

## Menu FIELD

The digitized value of the field strength is displayed in this menu. There is a logarithmic relation between this value and the field strength. This menu is useful for mounting the antenna, like described in chapter 'Assembly of antenna'.
FIELD


## Menu SETUP

The user-specific parameters of the PZF511 are set in this menu. To avoid the erroneous change of these parameters, it is not possible to enter the submenus by a simple pressing of the Set-button. The first submenu is entered if the Set-button is pressed until the character ${ }^{\prime}$ ' is displayed behind the text SETUP and the Menu-key is actuated then.


The following submenus are selectable (Set-button and Menu-key used as usual now):

## Menu DIST. o. T

The distance to the transmitter is entered in this menu for compensating the propagation delay of the received pseudo-random code. This setting should be done as exact as possible because the absolute precision of the time frame is influenced by this value.


After pressing the Set-button a four digit kilometer-value is displayed. By pressing the Set-key again, the first position is selected (flashing digit). To choose a different digit, the Menu-key has to be pressed, to increment the current digit the Set-button must be used. If the value is entered, it will be stored by pressing the Menu-key until the display returns to the setup submenu. The km-value is stored in the internal EEPROM of the board.

## Menu SYNTH.

The output frequency of the internal synthesizer is selected in this menu. This can be done in the range of $1 / 3 \mathrm{~Hz}$ to 9.999 MHz .

## SMMTH.



The frequency can be set here and the buttons are used the same way as for setting the DIST.o.T-value. In addition, the range of the frequency is defined and eiter xxx.xHz, x.xxxkHz, xx.xxkHz, xxx.xkHz or x.xxxMHz can be selected. In the first range (Hz) only the fractional digits $1 / 3 \mathrm{~Hz}, 0.5 \mathrm{~Hz}$ and $2 / 3 \mathrm{~Hz}$ are accepted. After the frequency is entered the value becomes valid and is stored in the battery buffered RAM just after the Menu-button is pressed a longer time. Note: the sinewave output of the synthesizer provides an acceptable output signal not above 100 kHz .

## Menu SYNTH M.

This menu configueres at which time after power-up the frequency generation of the synthesizer starts. The following settings are possible:Frequency-generation immediately after reset (allways),
SMHTHI.

## allums

or the clock has to synchronize first before generation of the frequency starts (after synchronisation). Frequencies less than 10 kHz are phase locked to the precise pulse per second at once.

$$
\text { aft. } 5 \mathrm{rH}
$$

Selection of the values happens like described.

## Menu TIME REF

The displayed timezone can be set in this menu. Possible selections are:: UTC, MEZ/ MESZ and MEZ (without daylight saving).

> TME REU MEzVES

## Menu PAR.COMx

The three menus PAR.COM0 to PAR.COM2 allow the configuration of the serial RS232 ports COM0 to COM2.
PHREOME


The following settings are possible:
Baudrate: 600, 1200, 2400, 4800, 9600 and 19200 Baud
Framing: 7N2, 7E1, 7E2, 8N1, 8N2, 8E1, 7 O 2 and 8 O 1

## Menu SER.MODE

The three serial ports COM0 to COM2 are able to send a time string in three different output modes. After the Set button is pressed the following is displayed:

## SERMODE



The three letters on the right side represent the output mode of the serial ports COM0, COM1 and COM2 (from the left to the right). With another brief push of the Set button the first letter starts to blink and can be set to one of the following values now:

| 'S' | timestring starts with a new second |
| :--- | :--- |
| 'M' | timestring starts with a new minute |
| 'R' | timestring starts just after sending an ASCII '?' (3F hex) to the clock |

## Menu IRIG

This menu allows to select an IRIG, AFNOR or IEEE1344 timecode to be generated.


Besides the amplitude modulated sine wave signal, the PZF511 also provides an unmodulated DC-Level Shift TTL output in parallel. Thus six time codes are available.


## Menu IRIG REF

This menu lets the user select a timezone for the timecode generation.

> TRTGREU MEzMESE

## Menu OSZ.ADJ.

The standard version of the PZF511 includes a voltage controlled temperature compensated oszillator (TCXO). Its nominal frequency of 10 MHz is adjusted by using two digital-to-analog converters (DACs). One of them is responsible for the coarse tuning and the other one for the fine adjustment of the oszillator.


The value for the coarse-DAC is settable in this menu (range: $0 \ldots 65535$ ).

## Changes in this menu should be done by Meinberg, only, and not by the user!

## Menu DAC CLR

The value of the fine DAC is displayed in this submenu.

$$
\text { DAC CLR } \quad 2 \mathrm{B4}
$$

If the 'Set'-button is pressed for approximately two seconds, the DAC is set to its midscale value and the difference to its last value is added to the coarse DAC proportional. This process is released automatically if the value of the fine DAC exceeds its limits (0...4095).

Therefore the setting of this value to mid-scale by hand is reserved for service purposes by Meinberg only.

Menu SER. No.
The 12-digit serial number of the PZF511 is displayed in this menu. This number may be helpful to know if the user asks Meinberg for support.


The most significant eight digits of the serial number are displayed first, after pressing the Set button the last four digits are shown.

## Asynchronous serial interfaces

Three independant serial RS232 interfaces are available at the rear connector of the clock PZF511. As set in menu SER.MODE, the serial ports can send the Meinberg standard time string either per second, per minute or on request by sending an ASCII '?' (3F hex) to the clock. Additional menus are used to set the framing and baudrate of these interfaces. The time string is build of 32 ASCII characters and inlcudes information about time, date and status. The structure of the string is described in the chapter "Format of the Meinberg stantard string".

## Pulse outputs

TTL-low and TTL-high active pulses per minute and per second are generated by the PZF511, which are available at the VG-connector.

Because the internal time frame of the clock has not yet been synchronized with the pseudo random sequence, no pulses are generated directly after reset. In case of normal receiption, the receiver needs about 12 seconds for coarse and another 5 seconds for fine synchronization. So, pulses are generated approximately 17 seconds after reset.

## Standard frequencies

The PZF511 provides four standard frequencies. The outputs $100 \mathrm{kHz}, 155 \mathrm{kHz}, 1 \mathrm{MHz}$ and 10 MHz are derived from the main oszillator of the clock which is phase locked to the DCF-system by a digital PLL (phase locked loop). The temperature-dependant drift and the aging of the oszillator can be compensated by this procedure. Therefore the excellent short-term stability of the standard frequencies of $+/-5 \cdot 10^{-9}$ (standard version with TCXO) is achieved. The value for regulating the digital-to-analog converter of the PLL is avilable directly after reset because it is stored in the battery-backed RAM of the clock. If the DCF-transmitter fails, the oszillator is controled by this value also. The accuracy of the standard frequencies will not be worse than $1 \cdot 10^{-8}$ for one hour without receition therefore.

## Frequency synthesizer

The synthesizer of the PZF511 generates a frequency in the range of $1 / 3 \mathrm{~Hz}$ up to 9.999 MHz , which can be set in the menu SYNTH. The synthesizer-output is available with TTL-level, as a sinewave signal or an open drain output at the VG-connector. However, the sine wave output generates an acceptable output signal up to 100 kHz , only.

The frequency to be generated can be adjusted by giving the four digits of highest-order, lower significant digits are set to zero. Only the fractions $1 / 3 \mathrm{~Hz}, 0.5 \mathrm{~Hz}$ and $2 / 3 \mathrm{~Hz}$ are allowed in the Hertz-range, so frequencies of $1 / 3 \mathrm{~Hz}$ or $2 / 3 \mathrm{~Hz}$ lead to a periodic fraction, often used by ripple control systems.

Up to a value of 10 kHz the synthesizer is phase-locked to the pulse per second. The accuracy of this frequency reaches the exactness of the standard frequencies therefore. Higher frequencies than 10 kHz have a maximum error of $+/-2,35 \mathrm{mHz}$.

The behaviour of the synthesizer after power-up is selectable (see menu SYNTH. M), Frequency generation can start either directly after reset or after synchronization.

## Timecode


#### Abstract

The transmission of coded timing signals began to take on widespread importance in the early 1950's. Especially the US missile and space programs were the forces behind the development of these time codes, which were used for the correlation of data. The definition of time code formats was completely arbitrary and left to the individual ideas of each design engineer. Hundreds of different time codes were formed, some of which were standardized by the "Inter Range Instrumentation Group" (IRIG) in the early 60's.

Except these "IRIG Time Codes", other formats like NASA36, XR3 or 2137 are still in use. The board PZF511 however generates the IRIG-B, AFNOR NFS 87-500 code as well as IEEE1344 code which is an IRIG-B123 code extended by information for time zone, leap second and date.


Block Diagram Timecode


## IRIG Standard Format



AFNOR Standard Format


## Assignment of CF Segment in IEEE1344 Code

| Bit No. | Designation | Description |
| :---: | :---: | :---: |
| 49 | Position Identifier P5 |  |
| 50 | Year BCD encoded 1 | low nibble of BCD encoded year |
| 51 | Year BCD encoded 2 |  |
| 52 | Year BCD encoded 4 |  |
| 53 | Year BCD encoded 8 |  |
| 54 | empty, always zero |  |
| 55 | Year BCD encoded 10 | high nibble of BCD encoded year |
| 56 | Year BCD encoded 20 |  |
| 57 | Year BCD encoded 40 |  |
| 58 | Year BCD encoded 80 |  |
| 59 | Position Identifier P6 |  |
| 60 | LSP - Leap Second Pending | set up to 59 s before LS insertion |
| 61 | LS - Leap Second | $0=$ add leap second, $1=$ delete leap second ${ }^{1 .)}$ |
| 62 | DSP - Daylight Saving Pending | set up to 59 s before daylight saving changeover |
| 63 | DST - Daylight Saving Time | set during daylight saving time |
| 64 | Timezone Offset Sign | sign of TZ offset $0={ }^{\prime}+$ ', $1={ }^{\prime}-{ }^{\prime}$ |
| 65 | TZ Offset binary encoded 1 | Offset from IRIG time to UTC time. Encoded IRIG time plus TZ Offset equals UTC at all times ! |
| 66 | TZ Offset binary encoded 2 |  |
| 67 | TZ Offset binary encoded 4 |  |
| 68 | TZ Offset binary encoded 8 |  |
| 69 | Position Identifier P7 |  |
| 70 | TZ Offset 0.5 hour | set if additional half hour offset |
| 71 | TFOM Time figure of merit | time figure of merit represents approximated clock error. ${ }^{2 .)}$ <br> $0 \times 00=$ clock locked <br> $0 \mathrm{x} 0 \mathrm{~F}=$ clock failed |
| 72 | TFOM Time figure of merit |  |
| 73 | TFOM Time figure of merit |  |
| 74 | TFOM Time figure of merit |  |
| 75 | PARITY | parity on all preceding bits incl. IRIG-B time |
| ${ }^{\text {1.) }}$ current fi | es not support leap deletion of leap |  |

## DC and AM Timecodes

DC-Level Shift Codes (PWM-signal) B00x and modulated sine wave carrier B12x are always generated simultaneously. Both signals are provided at the VG64-Connector, i.e. if code B132 is selected per menu, also code B002 is available. This applies for the codes AFNOR NFS 87-500 and IEEE1344 as well.

The TFOM field in IEEE1344 code is set dependent on the 'already sync'ed' character ('\#') which is sent in the serial time telegram. This character is set, whenever the preconnected clock was not able to synchronize after power up reset. The 'time figure of merit' (TFOM) field is set as follows.

Clock synchronized once after power up : TFOM $=0000$
Clock not synchronized after power up : TFOM = 1111

## Sine Wave AM Output

The amplitude-modulated carrier is available at the VG-connector pin 14a. The carrier frequency is 1 kHz (IRIG-B). The signal amplitude is $3 \mathrm{~V}_{\mathrm{pp}}$ (MARK) and $1 \mathrm{~V}_{\mathrm{pp}}$ (SPACE) into $50 \Omega$. The encoding is made by the number of MARK-amplitudes during ten carrier waves with the following agreements:
a) binary " 0 " $\quad 2$ MARK-amplitudes, 8 SPACE-amplitudes
b) binary "1" : 5 MARK-amplitudes, 5 SPACE-amplitudes
c) position-identifier : 8 MARK-amplitudes, 2 SPACE-amplitudes

## PWM DC Output

The pulse width modulated DC signals shown in the diagramms "IRIG" and "AFNOR standard format" are coexistent to the modulated output and is available at the VG connector pin 13a with TTL level.

## DCF77 Emulation

The correlation receiver PZF511 generates TTL level time marks (active HIGH) which are compatible with the time marks spread by the German long wave transmitter DCF77. This long wave transmitter installed in Mainflingen near Frankfurt/Germany transmits the reference time of the Federal Republic of Germany: time of day, date of month and day of week in BCD coded second pulses. Once every minute the complete time information is transmitted. The PZF511 generates time marks representing always the

DCF-time including announcement of changes in daylight saving and announcement of leap seconds, changing the timezone in the setup menu has no effect on the generation. The coding sheme is given below:


Time marks start at the beginning of new second. If a binary " 0 " is to be transmitted, the length of the corresponding time mark is 100 msec , if a binary " 1 " is transmitted, the time mark has a length of 200 msec . The information on the current date and time as well as some parity and status bits can be decoded from the time marks of the 15th up to the 58th second every minute. The absence of any time mark at the 59th second of a minute signals that a new minute will begin with the next time mark. The DCF emulation output is enabled immediately after power-up.

## Realtime clock

The PZF511 includes a battery-backed realtime clock which runs crystal-precise in case of power failure. A relativ accurate time is present immediately after power-up this way. An additional RAM of the realtime clock is used to store important system parameters.

## TIME_SYN output

This output is set to TTL-high if the receiver is in synchronous state (LED 'Freil' switched off). The output level changes to TTL-low if the receiver is in asynchronous state for more than one hour. The TIME_SYN output is available at the VG-connector and can be used to release an alarm, for example.

## Firmware updates

Whenever the on-board software must be upgraded or modified, the new firmware can be downloaded to the internal flash memory via the serial port COM0. There is no need to remove the board to insert a new EPROM.

If the 'Menu' key on the front panel is pressed or the pin '/BOOT' at the bladeconnector strip is held at TTL-low level while the system is powered up, a bootstraploader is actived and waits for instructions from the serial port COM0. The new firmware can be sent to PZF511 from any standard PC with serial interface. A loader program will be shipped together with the file containing the image of the new firmware.

The contents of the program memory will not be modified until the loader program has sent the command to erase the flash memory. So if the 'Menu' key is pressed unintentionally while the system is powered up, the firmware will not be changed accidentially. After the next power-up, the system will be ready to operate again.

## Replacing the lithium battery

The life time of the lithium battery on the board is at least 10 years. If the need arises to replace the battery, the following should be noted:

## ATTENTION:

> Danger of explosion in case of inadequate replacement of the lithium battery. Only identical batteries or batteries recommended by the manufacturer must be used for replacement. The waste battery must be disposed as proposed by the manufacturer of the battery.

## CE Label

C $\epsilon$
This device conforms to the directive 89/336/EWG on the approximation of the laws of the Member States of the European Community relating to electromagnetc compatibility.

## Technical specifications

RECEIVER: Direct conversion quadrature receiver with automatic gain control Bandwidth: approx. 20Hz, external ferrite antenna

CONTROL OF
RECEPTION: The DCF-signal is checked for minimum field strength by microprocessor. The result is indicated by LED. In addition, the value of the digitized field strength is displayed in menu 'FIELD'.

BATTERY-
BACKUP: In case of power failure an internal realtime clock runs crystalprecise. Important parameters are stored in the system-RAM. Life time of lithium battery: 10 years minimum Option: backup capacitor for about 150 hours

DISPLAY: Eight-digit alphanumeric display shows important time and status information. Digit-height 5mm.

INTERFACES: Three independent RS232 ports

BAUD RATES: $\quad 600,1200,2400,4800,9600$ or 19200 Baud

FRAMING: 7N2, 7E1, 7E2, 8N1, 8N2, 8E1, 7O2 or 8O1
PULSE
OUTPUTS: Active-high and active-low pulses per minute and per second, TTL-level, pulse duration 200 ms

ACCURACY
OF PULSES: Time delay of two systems PZF511 with a maximum distance of 50 km : typ. $20 \mu \mathrm{~s}$, max. $50 \mu \mathrm{~s}$
Time shifting of successive pulses: max. $1.5 \mu \mathrm{~s}$
PROPAGATION-
TIME
COMPENSATION:The signal delay is compensated if the distance of the receiver to the transmitter is given.

| STANDARD <br> FREQUENCIES: | 100kHz, 155kHz, 1 MHz and 10MHz are synchronized to DCF <br> by a digital PLL. |
| :--- | :--- | :--- |
|  | For accuracy refer to table "Oscillator Types". |

## PZF511 with different oscillator options

The correlation receiver PZF511 can be equipped with several different oscillator types. Compared with the standard version (TCXO) the accuracy specifications are changed as given in the following table:

|  | TCXO | OCXO LQ | OCXO MQ | OCXO HQ |
| :---: | :---: | :---: | :---: | :---: |
| short term stability $\tau=1 \mathrm{sec}$ | 4 * $10 \mathrm{E}-9$ | 2 * $10 \mathrm{E}-9$ | 4*10 E-10 | 2 * 10 E-11 |
| accurracy free run one day | $\begin{gathered} +/-1 * 10 \text { E-7 } \\ +/-1 \text { Hz (Note } 1) \end{gathered}$ | $\begin{gathered} +/-2 * 10 \text { E-8 } \\ +/-0.2 \mathrm{~Hz}(\text { Note } 1) \end{gathered}$ | $\begin{gathered} \text { +/- } 1,5 * 10 \mathrm{E}-9 \\ +/-15 \mathrm{mHz}(\text { Note } 1) \end{gathered}$ | $\begin{gathered} +/-5 * 10 \mathrm{E}-10 \\ +/-5 \mathrm{mHz}(\text { Note } 1) \end{gathered}$ |
| accurracy free run one year | $\begin{gathered} +/-1 * 10 \text { E-6 } \\ +/-10 \mathrm{~Hz} \text { (Note } 1 \text { ) } \end{gathered}$ | $\begin{gathered} +/-4 * 10 \text { E-7 } \\ +/-4 \text { Hz (Note 1) } \end{gathered}$ | $\begin{gathered} +/-1 * 10 \mathrm{E}-7 \\ +/-1 \mathrm{~Hz}(\text { Note } 1) \end{gathered}$ | $\begin{gathered} +/-5 * 10 \mathrm{E}-8 \\ +/-0.5 \mathrm{~Hz}(\text { Note } 1) \end{gathered}$ |
| phase noise | $\begin{array}{rc} 1 \mathrm{~Hz} & -60 \mathrm{dBc} / \mathrm{Hz} \\ 10 \mathrm{~Hz} & -90 \mathrm{dBc} / \mathrm{Hz} \\ 100 \mathrm{~Hz} & -120 \mathrm{dBc} / \mathrm{Hz} \\ 1 \mathrm{kHz} & -130 \mathrm{dBc} / \mathrm{Hz} \end{array}$ | $\begin{aligned} 1 \mathrm{~Hz} & -60 \mathrm{dBc} / \mathrm{Hz} \\ 10 \mathrm{~Hz} & -90 \mathrm{dBc} / \mathrm{Hz} \\ 100 \mathrm{~Hz} & -120 \mathrm{dBc} / \mathrm{Hz} \\ 1 \mathrm{kHz} & -130 \mathrm{dBc} / \mathrm{Hz} \end{aligned}$ | $\begin{array}{rc} 1 \mathrm{~Hz} & -75 \mathrm{dBc} / \mathrm{Hz} \\ 10 \mathrm{~Hz} & -110 \mathrm{dBc} / \mathrm{Hz} \\ 100 \mathrm{~Hz} & -130 \mathrm{dBc} / \mathrm{Hz} \\ 1 \mathrm{kHz} & -140 \mathrm{dBc} / \mathrm{Hz} \end{array}$ | $\begin{array}{rc} 1 \mathrm{~Hz} & -95 \mathrm{dBc} / \mathrm{Hz} \\ 10 \mathrm{~Hz} & -125 \mathrm{dBc} / \mathrm{Hz} \\ 100 \mathrm{~Hz} & -145 \mathrm{dBc} / \mathrm{Hz} \\ 1 \mathrm{kHz} & -155 \mathrm{dBc} / \mathrm{Hz} \end{array}$ |
| power supply at $25 \propto$ <br> steady state warm up | $\begin{gathered} +5 \mathrm{~V} / 20 \mathrm{~mA} \\ \mathrm{~N} / \mathrm{A} \end{gathered}$ | $\begin{aligned} & +5 \mathrm{~V} / 160 \mathrm{~mA} \\ & +5 \mathrm{~V} / 380 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & +5 \mathrm{~V} / 90 \mathrm{~mA} \\ & +5 \mathrm{~V} / 330 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & +5 \mathrm{~V} / 160 \mathrm{~mA} \\ & +5 \mathrm{~V} / 600 \mathrm{~mA} \end{aligned}$ |
| temperature dependant drift free run | $\begin{gathered} +/-1 * 10 \text { E-6 } \\ (-20 \ldots 70 \ltimes C) \end{gathered}$ | $\begin{gathered} +/-2 * 10 \mathrm{E}-7 \\ (0 \ldots 60 \propto) \end{gathered}$ | $\begin{gathered} +/-5 * 10 \mathrm{E}-8 \\ (-20 \ldots 70 \propto) \end{gathered}$ | $\begin{gathered} +/-1 * 10 \mathrm{E}-8 \\ (5 \ldots 70 \propto) \end{gathered}$ |

## Table1: Oscillator Types

The accurracy in Hertz is based on the standard frequency of 10 MHz . For example:
Accurracy of TCXO (free run one day) is +/- 1*10 E-7 * $10 \mathrm{MHz}=+/-1 \mathrm{~Hz}$

## Format of the Meinberg Standard Time String

The Meinberg Standard Time String is a sequence of 32 ASCII characters starting with the STX (start-of-text) character and ending with the ETX (end-of-text) character. The format is:
$<$ STX $>$ D:dd.mm.yy;T:w;U:hh.mm.ss;uvxy<ETX $>$
The letters printed in italics are replaced by ASCII numbers whereas the other characters are part of the time string. The groups of characters as defined below:
$<$ STX $>$ Start-Of-Text (ASCII code 02h)
dd.mm.yy the current date:
$d d$ day of month (01..31)
mm month (01..12)
yy year of the century (00..99)
w
hh.mm.ss the current time:

| $h h$ hours | $(00 . .23)$ |
| :--- | :--- |
| $m m$ | minutes |
| $s s$ | seconds |

$u v \quad$ clock status characters (depending on clock type):
$u$ : '\#' GPS: clock is running free (without exact synchr.)
PZF: time frame not synchronized
DCF77: clock has not synchronized after reset ، " (space, 20h)

GPS: clock is synchronous (base accuracy is reached)
PZF: time frame is synchronized
DCF77: clock has synchronized after reset
$v$ : '*’ GPS: receiver has not checked its position
PZF/DCF77: clock currently runs on XTAL

- ‘ (space, 20h)

GPS: receiver has determined its position
PZF/DCF77: clock is syncronized with transmitter
$x$ time zone indicator:
'U' UTC Universal Time Coordinated, formerly GMT
، MEZ European Standard Time, daylight saving disabled
'S' MESZ European Summertime, daylight saving enabled
$y \quad$ anouncement of discontinuity of time, enabled during last hour before discontinuity comes in effect:
'!' announcement of start or end of daylight saving time
'A' announcement of leap second insertion
' ' (space, 20h) nothing announced
<ETX> End-Of-Text (ASCII code 03h)

## Signal description PZF511

| Name | Pin | Function |
| :---: | :---: | :---: |
| GND | $32 \mathrm{a}+\mathrm{c}$ | Reference potential |
| VCC in ( +5 V ) | $1 \mathrm{a}+\mathrm{c}$ | +5 V power supply |
| VDD in ( +12 V ) | $2 \mathrm{a}+\mathrm{c}$ | +12 V power supply, not used by standard |
| DCF_MARk out | 17c | DCF77 emulation, TTL, active high pulse duration: 100 ms or 200 ms |
| P_SEC out | 6c | Pulse per second, TTL-level, active high |
| /P_SEC out | 6a | Pulse per second, TTL-level, active low |
| P_MIN out | 8 c | Pulse per minute, TTL-level, active high |
| /P_MIN out | 8 a | Pulse per minute, TTL-level, active low |
| 100 kHz out | 10a | 100 kHz frequency output, TTL-level |
| 155 kHz out | 11c | 155 kHz frequency output, TTL-level |
| 1 MHz out | 11a | 1 MHz frequency output, TTL-level |
| 10 MHz out | 12a | 10 MHz frequency output, TTL-level |
| F_SYNTH out | 21c | Synthesizer frequency, TTL-level |
| F_SYNTH_OD out |  | Synthesizer frequency, open-drain |
| F_SYNTH_SIN out |  | Synthesizer frequency, sinewave |
| Timecode_AM | 14a | Timecode, amplitude modulated 1kHz sinewave carrier |
| Timecode_DC | 13a | Timecode, TTTL-level, active high |
| COM0 TxD out | 26c | COM0 RS-232 output |
| COM0 RxD in | 30c | COM0 RS-232 input |
| COM1 TxD out | 24 c | COM1 RS-232 output |
| COM1 RxD in | 29c | COM1 RS-232 input |
| COM2 TxD out | 16a | COM2 RS-232 output |
| COM2 RxD in | 15a | COM2 RS-232 input |
| /BOOT in | 4a | Input for activating the bootstrap-loader |
| TIME_SYN out | 19c | Status output, TTL-level, high if synchronous |
| /RESET in reserved | 9c | Input for external RESET <br> Reserved for future expansions, do not connect |

## Rear Connector Pin assignment

|  | a | c |
| :---: | :---: | :---: |
| 1 | VCC in ( +5 V ) | VCC in $(+5 \mathrm{~V})$ |
| 2 | VDD in ( +12 V ) | VDD in ( +12 V ) |
| 3 |  |  |
| 4 | /BOOT in | reserved |
| 5 |  | reserved |
| 6 | /P_SEC out | P_SEC out |
| 7 |  |  |
| 8 | /P_MIN out | P_MIN out |
| 9 |  | /RESET in/out |
| 10 | 100 kHz out |  |
| 11 | 1 MHz out | 155 kHz out |
| 12 | 10 MHz out |  |
| 13 | Timecode_DC | PPS_IN (optional) |
| 14 | Timecode_AM |  |
| 15 | COM2 RxD in |  |
| 16 | COM2 TxD out |  |
| 17 |  | DCF_MARK out |
| 18 |  |  |
| 19 |  | TIME_SYN out |
| 20 |  |  |
| 21 |  | F_SYNTH out |
| 22 |  | F_SYNTH_OD out |
| 23 |  | F_SYNTH_SIN out |
| 24 |  | COM1 TxD out |
| 25 |  |  |
| 26 |  | COM0 TxD out |
| 27 |  | Capture1 (optional) |
| 28 |  | Capture0 (optional) |
| 29 |  | COM1 RxD in |
| 30 |  | COM0 RxD in |
| 31 |  |  |
| 32 | GND | GND |

Menüstruktur PZF511

$\xrightarrow[\text { 岕 }]{\longrightarrow}$

